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ABSTRACT

Diffusion model, as a new generative model which is very popular
in image generation and audio synthesis, is rarely used in speech
enhancement. In this paper, we use the diffusion model as a module
for stochastic refinement. We propose SRTNet, a novel method for
speech enhancement via Stochastic Refinement in complete Time
b domain. Specifically, we design a joint network consisting of a
deterministic module and a stochastic module, which makes up the
“enhance-and-refine” paradigm. We theoretically demonstrate the
feasibility of our method and experimentally prove that our method
achieves faster training, faster sampling and higher quality. Our code
is available at https://github.com/zhibinQiu/SRTNet.git

Index Terms— speech enhancement, time domain, diffusion
model, enhance-and-refine, joint training

1. INTRODUCTION

Speech enhancement (SE) using generative models has great po-
tential. Typical generative methods for SE are GAN-based meth-
ods [1, 2, 3, 4, 5, 6, 7], flow-based methods [8, 9] and VAE-based
methods [10, 11, 12, 13, 14, 15]. Diffusion model is another gen-
erative model which is very popular recently [16, 17]. However, it
is rarely used for speech enhancement. The SE methods in time do-
main not only avoid the distortions caused by inaccurate phase infor-
mation [18], but also avoid the extra overhead of computing the T-F
representation. [19] proposed a method for SE in time domain using
the diffusion model, but it relies on the speech spectrogram of noisy,
so it is not a complete time-domain method. Moreover, in [19], the
diffusion model directly estimates the distribution of clean speech
by optimizing the evidence lower bound (ELBO), which puts a large
computational pressure on the diffusion model and leads to a lot of
time consumption during the training phase. [20], a method of im-
age deblurring, proposed the predict-and-refine approach to reduce
the computational pressure of the diffusion model while guarantee-
ing the quality of the image generation. Inspired by this, a joint net-
work paradigm is designed, namely “enhance-and-refine” which is
comprised of two sub-modules, deterministic module and stochastic
module, respectively. The two modules are connected by the resid-
ual structure, and the noisy speech is initially enhanced after passing
through the deterministic module. Afterward, the initial enhanced
result passes through the residual structure and into the stochastic
module for detailed refinement. We refer to the network consisting
of these two modules as SRTNet. SRTNet allows the diffusion model
to act as a stochastic module to learn the residual distribution instead
of the distribution of data directly, which significantly reduces the
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Fig. 1. Overall structure of SRTNet.

computational overhead of the diffusion model. In addition, SRTNet
is a network entirely in time domain and does not depend on any
Fourier transform. Our main contributions are as follows:

• We innovatively apply the diffusion model as a stochastic re-
finement module for SE task and possess theoretical correct-
ness.

• We introduce an “enhance-and-refine” paradigm and use a joint
network to implement it, which results in faster convergence
and better speech quality.

2. PROPOSED METHODS

Existing diffusion model based SE methods generally trained di-
rectly on the original speech. Motivated by [20], it is also reasonable
for the SE task to learn the residual data. In the idea of “enhance-
and-refine”, we add a deterministic module Dθ to the original con-
ditional diffusion model. The block diagram of the overall structure
is illustrated in Fig. 1. The noisy speech y is initially enhanced by
Dθ and we call its output yinit. Then the residual operations are
enforced on the clean speech x and the noisy speech y with yinit

and the residuals x0, y0 are fed to stochastic module Sθ . Because
the output of the noisy speech passing through Dθ during sampling
is deterministic when the parameters are determined, we call the Dθ

deterministic module. Whereas in Sθ , we need to sample from Gaus-
sian distribution in diffusion model, which could produce different
outputs, so we call the Sθ stochastic module.



Algorithm 1 SRTNet Training.
repeat

Sample (x, y)∼qdata, ϵ∼N (0, I),
s∼Uniform({1, · · · , S}) , and

√
ᾱ∼Uniform(ls−1, ls)

Get yinit through the deterministic module Dθ ,
yinit = Dθ(y)
Get two Residual: x0 = x− yinit and y0 = y − yinit

Get xt according to Eq. (12)
Take gradient descent step on
∇θ ∥ 1√

1−ᾱ
(m

√
ᾱ(y0 − x0) +

√
δtϵ)− ϵθ(xt, y0,

√
ᾱ) ∥22

until converged

2.1. Diffusion and Reverse process of SRTNet

Diffusion. The diffusion process takes y0 as a condition, and the
noise in diffusion process contains not only Gaussian noise but also
non-Gaussian noise in y0 which is the residual of y and yinit. The
conditional diffusion process q(xt|x0, y0) is defined as follows:

q(xt|x0, y0) = N (xt; (1−mt)
√
ᾱtx0 +mt

√
ᾱty0, δtI), (1)

where ᾱt =
∏t

i=1 αi, the noise schedule {αt}Tt=1 is given. Addi-
tionally, mt is a interpolation ratio between the residual clean speech
x0 and the residual noisy speech y0. The value of mt is defined as:

mt =

√
(1− ᾱt)/

√
ᾱt, (2)

where m0 = 0 and mT ≈ 1. Therefore, the interpolation parame-
ter mt gradually shifts the mean of Eq. (1) from x-correlated to y-
correlated with the diffusion process which satisfies a Markov chain,
with details in [19]. And the variance δt is defined as:

δt = (1− ᾱt)−m2
t ᾱt. (3)

Reverse. In the reverse process, we start from xT , with the condi-
tion y0 and the variance δT :

p(xT |y0) = N (xT ,
√
ᾱty0, δT I). (4)

The reverse process also follows a Markov chain, so we can gradu-
ally obtain x0 from xT by continuously executing the reverse pro-
cess. The parameterised conditional reverse process pθ(xt−1|xt, y0)
is denoted as:

N (xt−1, c
x
t xt + cyt y0 + cϵtϵθ(xt, y0, t), δ̃tI). (5)

Note that the mean is parametrized as a linear combination of xt,
residual noisy speech y0, and estimated noise ϵθ . The coefficients
cxt , c

y
t and cϵt are derived as follows:

cxt =
1−mt

1−mt−1

δt−1

δt

√
αt + (1−mt−1)

δ̃t
δt−1

1√
αt

, (6)

cyt = (mt−1δt −
mt(1−mt)

1−mt−1
αtδt−1)

√
ᾱt−1

δt
, (7)

cϵt = (1−mt−1)
δ̃t

δt−1

√
1− ᾱt√
αt

. (8)

The variance δ̃t in Eq. (5) can be derived from reverse diffusion pro-
cess p(xt−1|xt, x0, y0), and the detailed derivation is given in [19]:

δ̃t = δt−1 −
( 1−mt

1−mt−1

)2

αt
δ2t−1

δt
. (9)

2.2. Training and Sampling of SRTNet

Training. The training process of the SRTNet is described in Al-
gorithm 1. During the training phase, all parameters of diffusion
process will depend on the noise level ᾱ which is obtained by hier-

Algorithm 2 SRTNet Sampling.
Get yinit through the deterministic module Dθ ,
yinit = Dθ(y)
Get Residual y0 = y − yinit

Sample xT∼N (xT ,
√
ᾱT y0, δT I),

for t = T, T − 1, · · · , 1 do
Compute cxt , c

y
t and cϵt using Eq. (6), (7), and (8)

Sample xt−1 ∼ pθ(xt−1|xt, y0) =
N (xt−1; c

x
t xt + cyt y0 − cϵtϵθ(xt, y0,

√
ᾱt), δ̃tI)

end for
return x0 + yinit

archical sampling rather than time steps used in [19]. Specifically, a
segment (ls−1, ls) is sampled from s ∼ U({1, . . . , S}) where S is
the length of the noise level schedule. Then the noise level ᾱ is ob-
tained from this segment by sampling from the uniform distribution.
The benefit of the diffusion model relying on the noise level in the
training phase is that it allows us to sample with an arbitrary noise
level schedule. The effectiveness of this approach is verified in [16].
Therefore, in Eq. (1), the interpolation ratio m is denoted as:

m =

√
(1− ᾱ)/

√
ᾱ, (10)

and the variance δ is:
δ = (1− ᾱ)−m2ᾱ. (11)

Therefore, the expression of xt through reparameterizing the diffu-
sion process Eq. (1) can be denoted as:

xt = (1−m)
√
ᾱx0 +m

√
ᾱy0 +

√
δϵ. (12)

To optimize the ELBO, we can directly model the mean of reverse
process Eq. (5). But in practice, we generally model the noise added
at a certain noise level, which is a unweighted variant of ELBO [21].
The objective function is defined as:

E ∥ ϵ∗ − ϵθ(xt, y0,
√
ᾱ) ∥22, (13)

where ϵ∗ is the noise from the combination of Gauss noise ϵ and the
noise in y0:

ϵ∗ =
m
√
ᾱ√

1− ᾱ
(y0 − x0) +

√
δ√

1− ᾱ
ϵ. (14)

Sampling. The sampling process of the SRTNet is described in Al-
gorithm 2. Through training, our model is able to efficiently model
the noise at different noise levels. The noisy speech y is first fed
into the deterministic model Dθ to obtain yinit. Unlike the training
process, here we obtain the noise level from the noise level schedule
rather than hierarchical sampling. By iterating over the noise level
schedule, we can run the reverse process through the reverse Markov
chain. Afterwards, we obtain the residual clean speech x0. The final
enhanced speech will be obtained by summing x0 and yinit.

2.3. Structure of deterministic and stochastic module

The deterministic module and the stochastic module have a similar
structure as in [22, 19]. Note that the conditioner and the noise level
encoding here are only for the stochastic module. Moreover, we have
made some other modifications to the structure. Unlike [22, 19], we
have modified the structure with two main changes:

Firstly, we directly use the waveform of the noisy speech y as
the conditioner instead of spectrogram. As a result, a complete time-
domain SE is achieved. Moreover, it is also experimentally found
that our model can converge faster, the detail in Sec. 3.

Secondly, we replace the time step encoding with a noise level
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encoding. But our encoding method differently from both in [17,
16], the encoding method can be expressed by:

√
ᾱencoding =

[
sin

(
10

0×4
63

√
ᾱ
)
, . . . , sin

(
10

63×4
63

√
ᾱ
)
,

cos
(
10

0×4
63

√
ᾱ
)
, . . . , cos

(
10

63×4
63

√
ᾱ
)]

. (15)

Through this, we can obtain different encoding results with different
noise level conditions as part of the input to the diffusion model.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Datasets

The VoiceBank-DEMAND corpus [23], which includes 30 speakers
from different accent regions in the UK and the US, is selected to
evaluate the proposed method, with 28 speakers selected for training
and 2 others for testing. The training set consists of 11, 572 single
channel speech samples, while the test set contains 824 utterances
from 2 speakers (one male and one female). The signal-to-noise ra-
tios (SNRs) of the training set are 0 dB, 5 dB, 10 dB, 15 dB. The test
set mixes with five unseen test noise types (all from the DEMAND
database [24]) selected at 2.5 dB, 7.5 dB, 12.5 dB, 17.5 dB. For the
experiments, the original waveform is sub-sampled from 48 kHz to
16 kHz. CHiME-4 [25] is another dataset commonly used for SE
tasks. The test set in CHiME-4 is synthesized from noises recorded
from four real-life scenes and four speakers, and as in [19], we also
take the signal from the fourth microphone to evaluate the general-
ization performance of our model.

3.1.2. Performance metrics

Four common SE evaluation metrics are used: perceptual evaluation
of speech quality (PESQ) [26], background intrusiveness (CBAK),
prediction of the signal distortion (CSIG), and overall speech quality
(COVL) [27]. The PESQ score ranges from -0.5 to 4.5, and the rest
of the metrics range from 1 to 5. Higher score means better speech
enhancement performance.

3.1.3. Training and sampling

We train SRTNet 800k steps on two NVidia 3090 GPUs with Adam
optimizer, learning rate is 2 × 10−4 and the batch size is set to 32.
The inference noise level schedule is same to [19]. In order to re-
cover the high frequency speech we combine the sampling results
with the noisy speech with a ratio of 0.2 at the end of the reverse

process [28, 29]. Moreover, to avoid randomness, we infer the re-
sults several times and take the average value as the final result. For
other models, we follow the training setups as in the original papers.

3.2. Results

3.2.1. Results from generative models in matched condition

SRTNet and other recent generative models are trained on the
VoiceBank-DEMAND dataset, and tested on the matched condition
(training and testing on the same dataset). We can find that our
method is the strongest generative model in Table 1. Compared
to other generative methods, we further narrow the gap with the
regression-based discriminative models. In addition, compared with
our baseline [19], not only do we achieve better performance, but
also greatly improve the convergence speed of the model. For ex-
ample, when we train them 800k steps, the two models have almost
converged. SRTNet consumes only one-fifth of the training time
of [19] as shown in Fig. 2.

Table 1. SRTNet v.s. generative models (matched condition)
Method PESQ(↑) CSIG(↑) CBAK(↑) COVL(↑)

unprocessed 1.97 3.35 2.44 2.63

SEGAN [1] 2.16 3.48 2.94 2.80
SASEGAN [6] 2.36 3.54 3.08 2.93
DSEGAN [30] 2.39 3.46 3.11 2.90
SE-Flow [9] 2.28 3.70 3.03 2.97
DiffuSE [22] 2.41 3.61 2.81 2.99
CDiffuSE [19](Base) 2.44 3.66 2.83 3.03
CDiffuSE [19](Large) 2.52 3.72 2.91 3.10

SRTNet (Ours) 2.69 4.12 3.19 3.39

3.2.2. Results on generalizability to mismatched condition

To verify that our model as a generative model has greater potential
in generalizability than the discriminative model, we have done ex-
periments on mismatched condition. The test set is obtained from
CHiME-4 test set. Table 2 shows the results. The performance of
the discriminative models degrade greatly and our model has a sig-
nificant advantage. The main reason is that the generative methods
learn information about the data distribution rather than a mapping
relationship learned by reducing a certain distance such as Lp−loss.
This feature allows SRTNet as a generative model to perform better.

Table 2. SRTNet v.s. discriminative models (mismatched condi-
tion). The numbers in parentheses indicate the relative change in
performance under mismatched condition and matched condition.
Method PESQ(↑) CSIG(↑) CBAK(↑) COVL(↑)

Unprocessed 1.27 2.61 1.93 1.88

WaveCRN [31] 1.43(-1.20) 2.53(-1.42) 2.03(-1.03) 1.91(-1.38)
Demucs [28] 1.38(-1.27) 2.50(-1.49) 2.08(-1.25) 1.88(-1.44)
Conv-TasNet [32] 1.63(-1.21) 1.70(-0.63) 1.82(-0.80) 1.54(-0.97)

CDiffuSE(Large) [19] 1.66(-0.86) 2.98(-0.74) 2.19(-0.72) 2.27(-0.83)
SRTNet (Ours) 1.87(-0.82) 3.37(-0.75) 2.49(-0.70) 2.67(-0.72)

3.2.3. Speech waveform and spectrogram analysis

Fig. 3 illustrates the waveforms and spectrograms of SRTNet output
at different phases. By observing the waveforms, we can find that
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Fig. 3. A test example (matched condition) enhanced by SRTNet
and the output at different phases. The output of each phase contains
two parts: speech waveform and spectrogram.

the noisy speech is more aggressively erased after the deterministic
module, and then the information is refined by the stochastic mod-
ule. From the two different phase of speech spectrograms, we can
find that in the first phase most of the noise has been removed and
our model can effectively deals with both high-frequency and low-
frequency noise as shown in the red box. Although our model is a
complete time domain approach, it performs well in the frequency
domain, which is one of the strengths of our model.

3.2.4. Ablation experiments

Here we carry out ablation tests to achieve deeper investigation into
the contribution of each individual controlling factor. When the best
PESQ is obtained, we record the corresponding time consumption
of training and sampling. Table 3 demonstrates the experimental re-
sults. The first experiment replaces the conditioner noisy waveform
with noisy spectrogram as in [19]. The enhanced speech quality
reduces from 2.69 to 2.59, indicating the effectiveness of the time-
domain conditioning. We also see significant fast convergence and
sampling speed in this setup. This is partly due to the absence of
Fourier transform, and partly due to the time of up-sampling the
speech spectrogram within the diffusion model. The second experi-
ment replaces the noise level with time step compare to Eq. (5) and
the objective function expression is:

E ∥ ϵ∗ − ϵθ(xt, y0, t) ∥22 . (16)

By the results we can find that using continuous noise level can
effectively reduce the sampling time. The third experiment removes
the deterministic module and we see a significant degradation of
the enhanced speech quality, indicating the gain by “enhance-and-
refine”. However, we also see the deterministic module increases
the convergence time to some extent, because it adds an additional
generation process. In summary, the deterministic module and time-
domain conditioning contribute the most to the performance im-
provement.

Table 3. Ablation experiments. The PESQ and the relative conver-
gence/Sampling time as metrics for our experiments. The original
SRTNet convergence and sampling time to 1.0.

Method PESQ(↑) Convergence/Sampling time(↓)

SRTNet 2.69 1.0 / 1.0
−waveform conditioner 2.59 4.86 / 1.22
−continuous noisy level 2.63 1.34 / 3.66
−deterministic module 2.58 0.83 / 0.88
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Fig. 4. Two variants of SRTNet. (a) Residual-free SRTNet, (b)
Residual-free SRTNet with an additional loss.

3.2.5. Variants of SRTNet

Under the proposed “enhance-and-refine” paradigm, SRTNet uses
two residuals as input to the diffusion model. It is natural to directly
use clean speech and the initially enhanced noisy speech as input.
Therefore, we design a variant of SRTNet, namely, Residual-free
SRTNet as show in Fig. 4(a). In this structure, it is intuitive to as-
sume that the final enhanced speech depends heavily on the output of
the deterministic module. Therefore, another variant of the experi-
ment is designed to ensure that the output of the deterministic model
is as close to clean speech as possible by adding a loss between
the output of the deterministic model and clean speech, as shown
in Fig. 4(b). The results of the two variant experiments are shown
in Table 4. The experiments demonstrate that Residual-free SRTNet
decreases in all metrics but still higher than other baselines. This re-
flects the effectiveness of proposed “enhance-and-refine” structure.
When an additional loss function is added, the performance degrades
dramatically. We attribute the reason to the additional loss causing
the original generative model to be no longer pure and thus unable
to learn the true data distribution. In the previous models (SRTNet,
Residual-free SRTNet), although there is not an individual loss func-
tion for the deterministic module, it still learns some useful informa-
tion through the unified loss function.

Table 4. Variant experiments of SRTNet.
Method PESQ(↑) CSIG(↑) CBAK(↑) COVL(↑)

Residual-free SRTNet 2.61 3.73 3.01 3.04
Residual-free SRTNet+loss 2.25 3.59 2.90 2.90
SRTNet 2.69 4.12 3.19 3.39

4. CONCLUSION AND FUTURE DIRECTIONS

We propose SRTNet, a joint network for complete time domain
speech enhancement. Our model achieves state-of-the-art perfor-
mance for SE task in generative models while significantly reducing
the time consumption of training. However, our model also has
some limitations, which we will investigate in our next work. When
the noise situation is more complex and the signal-to-noise ratio is
extremely low, our model may appear to be under-exerted, i.e., the
initial enhancement of the noise interference in the deterministic
module is not very thorough, resulting in the stochastic module that
does not recover the clean speech well.
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