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Visual navigation involves a movable robotic agent striving to reach a
point goal (target location) using vision sensory input. While navigation
with ideal visibility has seen plenty of success, it becomes challenging in
suboptimal visual conditions like poor illumination, where traditional
approaches suffer from severe performance degradation. We propose
E3VN (echo-enhanced embodied visual navigation) to effectively per-
ceive the surroundings even under poor visibility to mitigate this
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Echo-Enhanced Embodied Visual Navigation 959

problem. This is made possible by adopting an echoer that actively per-
ceives the environment via auditory signals. E3VN models the robot
agent as playing a cooperative Markov game with that echoer. The action
policies of robot and echoer are jointly optimized to maximize the reward
in a two-stream actor-critic architecture. During optimization, the reward
is also adaptively decomposed into the robot and echoer parts. Our ex-
periments and ablation studies show that E3VN is consistently effec-
tive and robust in point goal navigation tasks, especially under nonideal
visibility.

1 Introduction

In robotic navigation tasks, the autonomous subjects (i.e., robots) interact
with their environment in a continuous cycle of action and perception.
Specifically, the robot needs to reason wisely based on all available senses,
such as visual, auditory, proprioceptive, and tactile. The goal is to choose a
sequence of appropriate actions to maximize the quality and speed of task
completion.

For example, service robots may need to navigate autonomously to find
and fetch objects for users. Traditionally, 3D reconstruction algorithms like
SLAM (simultaneous localization and mapping; Chaplot et al., 2020; Karkus
et al., 2021) are adopted to build a map that is used in path planning (Gupta
et al., 2017). In contrast, recent work directly learns navigation strategies
from egocentric observations (Mirowski et al., 2017). A prevalent stream in
this category is PointGoal navigation, where the target position is revealed
to the robot in the form of a displacement vector relative to the robot loca-
tion (Savva et al., 2019). Most of the recent advances in solving PointGoal
navigation tasks utilize only the visual sensory input (hence the term vi-
sual navigation), as illustrated in Figure 1A. There are some recent advances
in visual navigation research: Gordon et al. (2019) investigates the trans-
ferability between different simulators and tasks types; Ye et al. (2020) and
Wijmans et al. (2020) propose to speed up learning via auxiliary tasks; Ra-
makrishnan et al. (2020) encourage exploration with occupancy anticipa-
tion; and Morad et al. (2021) adopted autocurriculum learning.

While the visual sensory input dominates the robotic navigation tasks,
the situation in the biological world is slightly different: several animal
species (e.g., bats, dolphins and whales) and even people with impaired
vision have echolocation capability (Christensen et al., 2020; Tracy and Kot-
tege, 2021), where they use sound to perceive spatial layout (Purushwalkam
et al., 2021) and locate objects (Yu, Huang et al., 2022; Gan et al., 2022; Yu,
Cao et al., 2022) in the wild. Inspired by echolocation, VisualEchoes (Gao
et al., 2020) uses echo and visual input simultaneously to obtain an im-
proved visual representation using self-supervised pretraining tasks. The
learned visual representation is expected to benefit from the echo input and
accomplish many downstream tasks better.
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960 Y. Yu et al.

Figure 1: The illustration of echo-enhanced embodied 3D visual navigation.
(A) Visual navigation under excellent lighting conditions. (B) Under poor light-
ing conditions, the performance of traditional visual navigation is degraded.
(C) We propose to equip the robot with a sound generator, the environmental
echo of which is used to maintain good navigation performance in poor lighting
conditions.

Practically, the quality of the signal captured by visual sensors is vulner-
able to environmental turbulence, typically interfering and degrading the
quality of visual sensory input. One commonly seen scenario is poor light-
ing conditions, where the vision sensor produces images with low bright-
ness and contrast, as exemplified in Figure 1B. In that case, how can we
guarantee the successful completion of visual navigation tasks? As a re-
sult, reliable visual navigation under nonideal visibility circumstances is
regarded as an important research problem. This work is dedicated to ad-
dressing this problem by introducing acoustic input from an echo generator
mounted on the robot. The echo generator, that is, the echoer, is typically
more cost-effective than some active sensors such as LiDAR. The echoer
proactively emits sweep signals following a strategy (continuously learned
under the condition of poor visibility), while the “ear” of the robot receives
the echo of the emitted signal, as demonstrated in Figure 1C. An optimal
navigation strategy can be learned using both the received echo and the ego-
centric visual input. By comparing the navigation performance under non-
ideal and ideal lighting conditions, we empirically show in section 4 that
poor lighting conditions cause significant navigation difficulties. Therefore,
we propose an end-to-end learning approach termed echo-enhanced em-
bodied visual navigation (E3VN) to improve visual navigation performance
under poor lighting conditions. The main contributions of this work are
summarized as follows.
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Echo-Enhanced Embodied Visual Navigation 961

Figure 2: The landscape of the related work addressing visual navigation. We
focus on multimodal (vision + sound) setups where sound is actively emitted
from the agent.

• In addition to the visual sensor, we employ an echoer whose signal
category, volume, and direction are treated as learnable actions.

• The robot and echoer policies are jointly optimized in a two-stream
actor-critic paradigm, during which the overall reward is parametri-
cally decomposed into the robot and echoer parts.

• Our comprehensive experiments and ablation studies validate the su-
perior effectiveness and robustness of E3VN.

2 Related Work

According to the adopted type(s) of sensor input, visual navigation meth-
ods are either single modal and multimodal, as illustrated in Figure 2.

Single-modal visual navigation uses only data collected from visual
sensors as the input of navigation tasks. The single-modal visual input
still dominates the visual navigation research, such as CMP (cognitive
mapping and planning; Gupta et al., 2017) and Habitat (Savva et al.,
2019).

Multimodal navigation uses different modes of sensory input to nav-
igate the robot. According to the combination of sensors used,
multimodal navigation embodies several main categories: visual+
language (Irshad et al., 2021; Wang et al., 2021; Kurita and Cho, 2021),
visual+point cloud (Teng et al., 2019), and visual+sound (Dean et al.,
2020), among others. Among these categories, visual+sound is the
main focus (see the boxes with red background in Figure 2) of this
letter.

Visual+sound navigation requires both visual and sound sensors. There
are largely two forms of utilizing sound information: (1) the sound
source acts as the navigation target, which comprises work such
as LLA (Look Listen & Act; Gan et al., 2020); SoundSpaces (Chen
et al., 2020); AV-WaN (Chen, Majumder et al., 2021); and SAVi (Chen,
Al-Halah et al., 2021); and (2) the robotic agent actively emits sound
as an active perception, which is a rarely seen (e.g., Gao et al., 2020)
setup we try to address in this work. However, the majority of the
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962 Y. Yu et al.

work in both forms merely utilizes sound in pretraining to enhance
the existing visual representation.

It is commonly believed that pretraining is beneficial to representation
learning (Beery et al., 2020; Chen et al., 2017; Vaswani et al., 2017; Fan et al.,
2021; Qin et al., 2021) and spatial reasoning in navigation (Chen, Chen et al.,
2021; Hong et al., 2021). Therefore, work like VisualEchoes (Gao et al., 2020)
emerged to pretrain visual encoders using both visual and echo input in a
supervised fashion. Concretely, it performs supervised learning using echo
and vision as input before using the learned visual encoder for navigation.
This approach has shown that visual representations learned in this way
are helpful for tasks that require spatial reasoning. Compared to this pre-
training paradigm, the main advantage of our work lies in the direct use of
echo input during navigation.

Our work belongs to multimodal navigation with some unique inno-
vations. First, unlike the work that uses sound sources as the navigation
target (Chen et al., 2020), the sound in our work is emitted from a mov-
ing robot. Second, unlike the common setup (e.g., Savva et al., 2019) with
only one agent (the robot), our work treats the robot and echoer as two
cooperative agents, where the echoer is a trainable agent whose actions in-
clude the category, direction, and volume of the sound. Third, different from
VisualEchoes (Gao et al., 2020) that use echo only in pretraining the visual
encoder, our work uses echo as a real-time input throughout the entire nav-
igation procedure. Fourth, the robot and echoer jointly optimize through a
learnable reward distribution strategy. In a nutshell, our research aims to
use the active perception of vision and echo input to enhance the perfor-
mance and robustness of point navigation tasks in 3D scenes.

3 The Proposed Approach: E3VN

We propose a novel approach, E3VN, to tackle the echo enhanced embodied
visual navigation tasks. E3VN models the robot agent as playing a Markov
game with an echoer agent. The overall algorithm is illustrated in Figure 3.
E3VN has four main modules: the robot agent, the ehoer agent, the reward
assignment module, and the critic.

3.1 Problem Definition and Notations. We denote the robot and echoer
with superscript ω and ν, respectively. They play a game denoted as M =
(S, (Aω,Aν ),P, (Rω,Rν )), where S is the state set,Aω is the robot action set,
Aν is the echoer action set, andP :S × Aω × Aν → S is a joint state transition
function. The robot and echoer reward functions Rω : S × Aω × Aν × S →
R and Rν : S × Aω × Aν × S → R depend on the current state, the next
state, and the actions taken by robot and echoer, respectively. Each player
wishes to maximize their discounted accumulative rewards. We use r to de-
note the reward given by the environment at every time step in an episode.
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Echo-Enhanced Embodied Visual Navigation 963

Figure 3: E3VN architecture: the robot and echoer first learn to encode observa-
tions as s1

t and s2
t respectively, which are fed to actor-critic networks to predict

the next actions aω
t and aν

t . The reward assignment module decomposes the re-
ward into the robot (rω

t ) and echoer (rν
t ) parts.

Figure 4: A comparison between the standard MDP and our E3VN.

As illustrated in Figure 4A, visual navigation can be modeled as a stan-
dard MDP (Markov decision process): π� = arg max

π∈�
G(π ). Seen from

Figure 4B, E3VN is modeled as a multiagent (Sunehag et al., 2018; Rashid
et al., 2018) problem involving two collaborating players sharing the same
goal:

π� = arg max
πω∈�ω, πν∈�ν

G(πω, πν, r) =
(

arg max
πω∈�ω

G(πω, r), arg max
πν∈�ν

G(πν, r)
)

,

s.t. G(πω, πν, r) = wωG(πω, r) + wνG(πν, r),
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964 Y. Yu et al.

G(πω, r) =
∑
t=0

γ trtρ
ω, G(πν, r) =

∑
t=0

γ trtρ
ν,

ρω = (1 − ρ)/2 + ρ · ρω
R , ρν = (1 − ρ)/2 + ρ · ρν

R, ρω
R + ρν

R = 1,

wω > 0, wν > 0, 0 ≤ ρ ≤ 1, 0 ≤ ρω
R ≤ 1, 0 ≤ ρν

R ≤ 1, (3.1)

where G(πω, πν, r) is the expected joint rewards for the agent and echoer as
a whole. G(πω, r) and G(πν, r) are the discounted and cumulative rewards
for the agent and echoer, respectively. wω and wν denote the constant cu-
mulative rewards balance factors. ρω and ρν are the immediate reward con-
tribution. ρω

R and ρν
R represent the trainable reward decomposition weights.

ρ is a constant (throughout the training) reward allocation parameter. The
theoretical derivation of equation 3.1 is detailed in appendix A.

3.2 Action Spaces and Reward. We adopt the same robot action space
as SoundSpaces (Chen et al., 2020): MoveForward, TurnLeft, TurnRight, and
Stop; and appendix C has more details. In SoundSpaces, the echoer emits a
chosen sound from the current robot position; the emitted omnidirectional
audio is convolved with the corresponding binaural RIR (room impulse re-
sponses) to generate a binaural response that is “heard” by the robot. In this
sense, the echoer’s sound input is informative about the reflections on the
surface of objects, making it physically admissible and realistic. Moreover,
the echo contains the geometry and material information of the object being
sensed. The echoer has a hybrid action space Aν = Aν,cat × Aν,vol × Aν,dir,
which is the Cartesian product of three subspaces: category Aν,cat, volume
Aν,vol, and direction Aν,dir.

The reward is calculated based on two factors: (1) how far the robot is
from the navigation target and (2) whether it succeeds in reaching it. Specif-
ically, if the robot successfully reaches the target and executes the Stop ac-
tion, it is rewarded with +10, plus an additional bonus of 0.25 to reward
a shorter Manhattan distance to the target. To encourage faster navigation,
we impose a time penalty of −0.01 on each action performed.

3.3 Joint Optimization of Robot and Echoer. At each time step t, the
agents (robot and echoer) observe a state Ot = (It, Et,	t ) where I is the ego-
centric visual input (i.e., the RGB image); E is the received echo in the form
of a binaural audio waveform represented as a two-channel spectrogram;
	 = (	x, 	y) is a relative displacement vector from the agent to the goal
in the 2D ground plane of the scene by pose sensor.

E3VN, as shown in Figure 3, starts with encoding the visual and echo in-
put using a convolution neural network (CNN), respectively. The CNNs
generate visual vector fI1(It ) and echo vector fE1(Et ). Then we concate-
nate the two vectors together with 	 to obtain the global observation
embedding e1 = [ fI1(It ), fE1(Et ), 	t]. We transform the observation em-
beddings to state representations using a gated recurrent unit (GRU),
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Echo-Enhanced Embodied Visual Navigation 965

s1
t = GRU(e1

t , h1
t−1). For echoer, we adopt a similar procedure to obtain s2

t .
The state representations, s1

t and s2
t are respectively fed to an actor-critic net-

work to predict the action distribution (i.e., πω
θ (aω

t |s1
t , h1

t−1) for the robot and
πν

θ (aν
t |s2

t , h2
t−1) for the echoer) and state value (i.e., Vω

θ (s1
t , h1

t−1) for the robot
and Vν

θ (s2
t , h2

t−1) for the echoer). The actors and critics are approximated by
single linear layer neural networks.

Finally, two action samplers sample the next actions, aω
t and aν

t , from the
action distributions. The overall critic is a linear sum of RobotCritic and
EchoCritic, as shown in Figure 3. C j corresponds to four different loss com-
ponents by substituting the superscript “ j” with “ν, cat,” “ν, vol,” “ν, dir,”
and “ω,” respectively.

C j = 1
2

∑
(V j(s) − V̂θ j (s))2 −

∑
[Â j log(πθ j (a | s)) + β · H(πθ j (a | s))], (3.2)

where V j(s) = maxa∈A j E[rt + γ · V j(st+1) | st = s] and V̂θ j (s) is the state
value for the target network. Notation Â j

t = ∑T−1
i=t γ i+2−t · δ

j
i Â j

t is the ad-
vantage for a given length-T trajectory, where δ

j
t = rt + γ · V j(st+1) − V j(st ).

The overall loss L to optimize is formulated based on loss for each actor-
critic branch:

L = w1Lν + w2Cω + w3Lr , where

Lν = 1
3

(Cν,cat + Cν,vol + Cν,dir) , and

Lr =
∑

(r − rω − rν )2, (3.3)

where rω and rν are the predicted reward (for the tth time step) of the robot
and echoer, respectively. r is the reward obtained from the environment.
Lr is the regression loss for the reward assignment module. The weights
w1, w2, w3 should add up to 1.0 exactly: w1 + w2 + w3 = 1.0. The overall
loss L is minimized following proximal policy optimization (PPO; Schul-
man et al., 2017). The entire procedure is illustrated in algorithm 1 in the
form of pseudocode.

3.4 Reward Assignment. The distribution of rewards is a combination
of trainable and fixed weighting:

ρω = 1 − ρ

2
+ ρω

R · ρ, ρν = 1 − ρ

2
+ ρν

R · ρ, Lρ =
∑

(1 − ρω
R − ρν

R)2, (3.4)

where ρ is a constant weight parameter; ρω
R and ρν

R are reward weights pre-
dicted by neural networks; and ρω and ρν are immediate reward weights.
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966 Y. Yu et al.

Lρ is equivalent to Lr in equation 3.3. Reward rω and rν can be respectively
calculated with rω = r · ρω and rν = r · ρν .

4 Experiments and Results

We evaluate the performance of E3VN on the PointGoal navigation (Savva
et al., 2019) tasks, where the robot moves inside one of the two 3D envi-
ronments (Chen et al., 2020): Replica (Straub et al., 2019) and Matterport3D
(Chang et al., 2017). The scene map is unknown to the robot. Hence, the
robot has to incrementally gather observations to understand the scene. The
original environments only provide RIRs for generating sounds when an
agent is facing 0, 90, 180, or 270 degrees; to obtain a better granularity, we
augment (see appendix C.2) the original RIRs to {0, 15, . . . , 345}.

The baseline methods selected to benchmark E3VN include (1) Random
action sampling, (2) PointGoal (Savva et al., 2019), (3) VisualEchoes (Gao
et al., 2020), and (4) PointGoal+: same as Savva et al. (2019) except zero-
mean and unit-variance normalization of RGB images.

As of evaluation metrics, we calculate SPL (success weighted by path
length; Anderson et al., 2018), SSPL (soft SPL), SR (success rate), Rmean (aver-
age episode reward), DTG (distance to goal), and NDTG (normalized DTG).
Appendix D provides the definition of these metrics, which are commonly
adopted. All reported metrics are averaged over five runs. Since every met-
ric value has a standard deviation (STDEV) lower than 0.01, for conciseness,
we do not show the value of STDEV.

In order to test the model’s performance in nonideal illumination condi-
tions, we simulate the nonideal input Il from the raw visual input I:

Il
t = f (M(M−1( f −1(It · α)) + ns + nc)), (4.1)

where Il
t is the simulated visual input for the tth time steps, and It is the cor-

responding raw visual input captured by the sensor in Habitat Simulator

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/5/958/2079357/neco_a_01579.pdf by R
am

ona M
archand on 03 M

ay 2023



Echo-Enhanced Embodied Visual Navigation 967

Table 1: Echo Boosts Other Modalities.

Vision Echoer SPL (↑) SR (↑) Rmean (↑) DTG (↓)

RGB � 0.481 0.562 6.7 4.29
RGB ✗ 0.440 0.542 6.4 4.42
Depth � 0.511 0.637 8.3 3.90
Depth ✗ 0.484 0.582 7.3 4.11
RGBD � 0.528 0.647 8.8 3.65
RGBD ✗ 0.511 0.643 8.5 3.73

Notes: The best-performing results obtained using the same
vision type are emphasized in bold. This note applies to the
balance of the tables in this article.

(Savva et al., 2019). The exposure time α takes a value between 0 and 1. The
independent noise nc is sampled from a zero-mean gaussian with a variance
of 0.049. For simplicity, we set the illumination-dependent noise ns to zero.
The combination of α, ns, and nc describes different low light conditions.
M(·) and M−1(·) denote Bayer pattern and inverse Bayer pattern, respec-
tively. f (·) is the camera response function (Grossberg and Nayar, 2004),
and f −1(·) is the inverse of f (·). Equation 4.1 is approximated via a pre-
training paradigm following Wang et al. (2019). We use L.L.1 (best lighting)
to L.L.5 (worst lighting) to denote different simulated low-light intensities.
More details are in appendix E.1.

4.1 Echoer Is a Performance Booster. The echoer emits a wavelet signal
with linearly adjustable frequency at every time step, enabling a more flex-
ible perception of the external environment. In principle, echo input may
be a supplement to any other modality, such as RGB, depth, and RGBD.
Table 1 shows the capability of echo to supplement other modalities under
L.L.1 on data set Replica. For conciseness, in the upcoming experiments, we
report the results only in low-light situations where the visual input is RGB
images.

4.2 On Optimal Reward Assignment. The optimal parameters (ρ, ρω,
and ρν) of reward assignment module (see section 3.4) is searched exper-
imentally in this section. The experiments were carried out under L.L.5
on the Replica data set. From Table 2, we observe that the robot has the
best navigation ability when ρ = 0.4, where the learned ρω and ρν are, re-
spectively, 0.69 and 0.31. This experiment also shows that a combination
of fixed and trainable allocation works better than a fixed equal allocation,
ρω = ρν = 0.5. Appendix F.2 has more details.

4.3 On Echoer Action Space: Category, Direction, and Volume. In
the action space of echoer, the relative contribution of the sweep signal’s
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968 Y. Yu et al.

Table 2: Optimal Reward Assignment.

ρ ρω ρν SPL (↑) SR (↑)

0.0 0.50 0.50 0.338 0.363
0.2 0.60 0.40 0.368 0.417
0.4 0.69 0.31 0.407 0.474
0.6 0.21 0.79 0.406 0.446
0.8 0.72 0.28 0.327 0.373
1.0 0.33 0.67 0.302 0.331

Table 3: The Contribution of Echo Category (C), Direction (D), and Volume (V).

C V D SPL (↑) SSPL (↑) SR (↑) Rmean (↑) DTG (↓) NDTG (↓)

� ✗ ✗ 0.384 0.537 0.425 4.8 4.58 0.437
✗ � ✗ 0.265 0.518 0.291 3.4 4.70 0.466
✗ ✗ � 0.301 0.515 0.329 3.4 4.83 0.471
✗ � � 0.346 0.506 0.377 3.8 4.93 0.480
� ✗ � 0.346 0.495 0.378 3.6 5.05 0.494
� � ✗ 0.287 0.518 0.321 3.7 4.72 0.460
� � � 0.338 0.527 0.363 4.0 4.83 0.468

Table 4: The Impact of Different Echo Volumes.

Echo volume SPL (↑) SR (↑)

0.25 0.314 0.351
0.5 0.340 0.388
0.75 0.269 0.295
1.0 0.341 0.389

category (C), direction (D), and volume (V) might be different. With that in
mind, we measure the performance under different combinations of C, D,
and V. Table 3 illustrates the results for L.L.5 and ρ = 0 on Replica, where
sound category (C) seems to be the main factor. The impact of scanning
direction (D) has a moderate influence. The sound volume (V) has a negli-
gible impact, coinciding with the assumption that a stronger signal is gen-
erally appreciated; this is verified in Table 4, where the echo category and
direction are set to 5 ms and the same as the facing direction of the robot
camera, respectively. Based on the results in Tables 3 and 4, we believe it
is sufficient to fix the echo volume (aν,vol = 1.0) while aligning the sound
direction with that of the camera (aν,dir = 0). We notice that enabling the
direction and volume seems to degrade the performance. This is a conse-
quence of a static environment in each episode, meaning there are no other
moving distracting objects, and the forward-facing (i.e., same as the moving
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Echo-Enhanced Embodied Visual Navigation 969

Figure 5: Visualization of the learned visual features that are overlaid on RGB
images.

Figure 6: Visualization of the learned echo features. The dimension is reduced
using TSNE. The horizontal and vertical axes are the two primary dimensions of
the reduced audio features. The ground truth is represented by different colors:
(Left) The discrete distance (from 0 to 10) between the agent and the target.
(Right) The orientation (−120 to 120 degrees) between the agent and the target.

direction) signal tends to be the most informative. Likewise, the signal with
a high volume is always preferred to ensure a stronger echo unless there
is a requirement for energy saving. In theory, adding direction and volume
enables the agent to explore more action possibilities, yet potentially makes
policy learning more challenging and unstable.

4.4 Visualization of Learned Features. To qualitatively examine the
disengagement of the learned visual and echo features, we (1) overlay
the visual features from different encoder layers (see Figure 5) on top of the
original RGB image and (2) apply TSNE (Flexa et al., 2021) on the learned
echo features (see Figure 6). We observe from Figure 5 that the visual en-
coder learns to pay more attention to the walkable area, which is more ev-
ident with a deeper encoder. Figure 6 demonstrates that the learned echo
features are naturally correlated with the distance and angle to the goal.

4.5 Robustness to Lighting Conditions. In Figures 7A and 7B, we
compare our method with the selected baselines under different lighting
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Figure 7: Navigation performance comparison to baselines under different
lighting conditions.

Figure 8: Demonstration of E3VN robustness: the navigation trajectories ob-
tained by the end of one episode using different methods (columns) and lighting
conditions (rows) on the Replica data set.

conditions simulated using equation 4.1. E3VN achieves the best perfor-
mance under different low-light conditions, illustrating its robustness in
low-light scenarios. (For more comparison using metrics other than SPL,
see appendix F.) Figure 8 (for Replica) and Figure 9 (for Matterport3D)
demonstrate the robot trajectories obtained using different approaches
under different simulated lighting conditions. As the environment dete-
riorates from good to poor lighting conditions, the performance of all al-
gorithms declines to varying degrees, while E3VN maintains a reasonable
performance.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/5/958/2079357/neco_a_01579.pdf by R
am

ona M
archand on 03 M

ay 2023



Echo-Enhanced Embodied Visual Navigation 971

Figure 9: Demonstration of E3VN robustness: the navigation trajectories ob-
tained by the end of one episode using different methods (columns) and lighting
conditions (rows) on the Matterport3D data set.

E3VN outperforms others in normal lighting L.L.1, which coincides with
the result in Table 1. The echoer emits a wavelet signal with linearly ad-
justable frequency at every time step, enabling a more flexible perception
of the external environment. As we know, a visual signal is obtained from
a passive sensor, and the emitted wavelength of the depth sensor is typi-
cally fixed. In principle, echo input can be used as an effective supplement
to depth and RGB for both low light and normal lighting conditions.

4.6 On Relative Modality Impact. Because of the ever-changing envi-
ronmental context and target location, we expect that the relative impact
of echo and visual input on the agent’s decision at a different time can
vary. To quantify visual (echo) impact, we replace the visual (echo) input
with random noise; the visual (echo) impact score is the absolute difference
(normalized) between the logarithmic action probabilities and the semicor-
rupted model and the intact one. Figure 10 shows the impact scores on the
egocentric robot view at different time steps. In ideal lighting conditions
(the top row), the relative impact of vision and echo varies according to the
surroundings. But in poor lighting conditions (the bottom row), the echo
dominates the actions performed.

4.7 Ablation Study of the Learned Policies. Are the learned policies
of robot (aω) and echoer (aν) better than a random strategy? To answer that
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Figure 10: Relative visual and echo impact score for one episode under L.L.1
(top) and L.L.5 (bottom). Columns correspond to three sampled time steps.
The green and orange bars represent the importance of echo and vision,
respectively.

Table 5: Ablation Study of the Learned Robot and Echoer Policies.

Echo policy (aν ) Robot policy (aω) SPL (↑) SSPL (↑) SR (↑) Rmean (↑)

Learned Random 0.000 0.022 0.000 0.0
Random Learned 0.417 0.474 0.540 6.2
Learned Learned 0.481 0.533 0.562 6.6

question, we replace the learned policy with a random one for the trained
robot and/or echoer. From Table 5, we can see that the best strategy is ob-
tained only when both learned policies are used.

4.8 Single Agent versus Two Agents. One might argue that treating
echoer and robot as a single agent might avoid the need for reward assign-
ments with dual encoders. Notice that the echoer and the robot have differ-
ent action spaces; they tend to focus on different aspects embodied in the
state. As a result, the agents might act more effectively and efficiently if they
can learn the state representation separately. On the other point, treating
them as a single agent will lead to a joint action spaceR108 that is much more
complex than either echoer (R27) or robot (R4). Therefore, the joint agent will
likely increase the performance of policy learning and optimization. To val-
idate that assumption, we carry out an additional experimental comparison
between single and multiple agents. The results in Table 6 show that two-
agent architecture performs much better than the single-agent counterpart
from the aspect of many evaluation metrics.
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Table 6: Comparison between Two Architectures (on Replica Data Set and un-
der Perfect Vision): One Agent versus Two Agents.

Architecture SPL (↑) SSPL (↑) SR (↑) Rmean (↑) DTG (↓) NDTG (↓)

One agent 0.473 0.525 0.589 7.3 4.12 0.363
Two agents 0.483 0.532 0.630 8.3 3.80 0.321

5 Conclusion

This letter proposes a novel end-to-end point goal navigation approach,
E3VN, to enhance performance when facing scenarios with poor visibil-
ity. E3VN models the robot as playing a Markov game with an echoer that
actively emits sound and receives environmental echo simultaneously. The
echoer can change the sound category, volume, and direction. Using both
visual and echo input, the robot and echoer policies are jointly optimized
by maximizing the reward obtained from the environment. Throughout the
training, the overall reward is decomposed into the robot and echoer parts,
which are also tuned and optimized. We conduct experiments on widely
adopted navigation tasks. The performance of our approach surpasses all
state-of-the-art baselines in different lighting conditions. E3VN is so robust
to various visual conditions that it maintains more than 95% of the naviga-
tion performance while other methods degrade to a barely usable state.
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